动态仙人掌 II
时间限制:40s 空间限制:256MB
题目描述
有一天,VFleaKing到森林里游玩,回来之后跟pyx1997说,我发现好多棵会动的树耶!
pyx1997说,这有什么好稀奇的,我用手指头就能维护每棵树的形态。
于是又过了几天VFleaKing到沙漠里游玩,回来之后跟pyx1997说,我发现好多棵会动的仙人掌耶!
pyx1997说,这有什么好稀奇的,我用脚丫子就能维护每棵仙人掌的形态。
于是VFleaKing很郁闷,他向你求助,请帮帮他吧。
如果一个无向连通图的任意一条边最多属于一个简单环,我们就称之为仙人掌。
如果一个无向图的每个连通块都是个仙人掌,且不存在自环,我们就称之为沙漠。
为了证明你确实能够维护仙人掌,我们给你n个结点,从1到n标号。初始时没有任何边。每次进行如下操作之一:
1. link v u w
在结点v, u间连一条权值为w的边。1 <= v, u <= n且w为正整数。
如果连边完成后图仍为沙漠,则输出"ok"(不含引号)。
否则操作非法,撤销此次操作并输出"failed"(不含引号)。
2. cut v u w 在结点v, u间删掉权值为w的边。1 <= v, u <= n且w为正整数。
如果存在这样的边则输出"ok"(不含引号)(如果有多条权值为w的边删去任意一条)。
否则操作非法,不进行操作并输出"failed"(不含引号)。
3. distance? v u 查询结点v到结点u的最短路信息。1 <= v, u <= n。
输出两个用空格隔开的整数Lm, Wm。
Lm代表最短路的长度,Wm代表最短路上的边权的最小值。
如果v = u则Lm = 0, Wm = 2147483647。
如果没有路可到达则Lm = -1, Wm = -1。
如果最短路不唯一则Wm = -1。
输入格式
第一行两个用空格隔开的正整数n, m表示一共有n个结点,m个操作。
接下来m行,每行代表一个操作。
输出格式
对于每个操作,输出相应的结果。
样例输入
6 49 link 1 2 1 link 1 2 2 distance? 1 2 cut 1 2 1 link 1 2 2 distance? 1 2 cut 1 2 2 cut 1 2 2 link 3 3 2 cut 4 4 2 link 1 2 2 link 1 3 3 link 2 3 4 distance? 1 2 distance? 1 3 distance? 2 4 link 2 4 3 link 3 5 3 link 4 5 1 distance? 4 5 cut 1 2 2 link 4 5 5 distance? 1 5 cut 2 3 4 link 2 5 5 link 1 5 2 distance? 1 2 cut 4 5 5 distance? 1 2 cut 3 5 3 distance? 1 2 cut 2 5 5 distance? 1 2 distance? 4 5 link 3 5 2 distance? 1 3 distance? 4 3 link 4 6 3 link 2 6 1 distance? 2 6 distance? 2 5 link 5 6 2 distance? 1 6 distance? 2 3 cut 2 4 3 link 2 5 4 distance? 4 1 cut 4 6 3 distance? 4 1
样例输出
ok ok 1 1 ok ok 2 -1 ok ok failed failed ok ok ok 2 2 3 3 -1 -1 ok ok failed 10 3 ok ok 6 3 ok ok ok 7 2 ok 7 2 ok 7 2 ok -1 -1 -1 -1 ok 3 3 -1 -1 ok ok 1 1 -1 -1 ok 4 2 5 1 ok ok 7 2 ok -1 -1
提示
1 <= n <= 100000
1 <= m <= 400000
保证中间有关边权的计算不会超过int范围。(祝pascal选手早日转C++,其实我在说longint)
题目来源
By VFleaKing