采矿

时间限制:20s      空间限制:259MB

题目描述

浩浩荡荡的cg大军发现了一座矿产资源极其丰富的城市,他们打算在这座城市实施新的采矿战略。这个城市可以看成一棵有n个节点的有根树,我们把每个节点用1到n的整数编号。为了方便起见,对于任何一个非根节点v,它任何一个祖先的编号都严格小于v。树上的每个节点表示一个矿点,每条边表示一条街道。作为cg大军的一个小队长,你拥有m个部下。你有一张二维的动态信息表,用Ti,j表示第i行第j列的数据。当你被允许开采某个区域时,你可以将你的部下分配至各个矿点。在第i个矿点安排j个人可以获得Ti,j单位的矿产。允许开采的区域是这样描述的:给你一对矿点(u,v),保证v是u的祖先(这里定义祖先包括u本身);u为你控制的区域,可以在以u为根的子树上任意分配部下;u到v的简单路径(不包括u但包括v,若u=v则包括u)为探险路径,在该路径上你可以选择至多一个矿点安排部下。你这次开采的收益为安排有部下的矿点的收益之和。


输入格式

输入的第一行包含5个正整数n、m、A、B、Q。n为矿点的个数,m为部下的数量。A、B、Q是与动态信息表有关的数据。第二行包含n-1个正整数,第i个数为Fi+1,表示节点i+1的父亲。接下来需要你用下文的方法依次生成n组数据,每组数据共m个。其中第i组的m个数据为信息表中第i行的m个数据。紧接着一行包含一个正整数C,表示事件的数量。最后给出C行,每行描述一个事件。每个事件会先给出一个0或1的整数。如果该数为0,则后面有一个正整数p,表示动态信息表有更新,你需要生成一组m个数据,来替换信息表中第p行的m个数据。如果该数为1,则后面有两个正整数u、v,表示出现了一个你可以开采的区域,你需要回答这次开采的收益。同一行的各个数之间均用一个空格隔开,没有多余的空格和换行。数据的生成方法如下:每次生成一组m个从小到大排列的数据,替换动态信息表的一行。其中,从小到大第j个数替换信息表中第j列的数。调用以下代码m次并排序得到一组数据。(注意可能会出现重复的数)函数GetInt A←((A xor B)+(B div X)+(B * X))and Y B←((A xor B)+(A div X)+(A * X))and Y 返回(A xor B)mod Q 其中A、B、Q均用32位有符号整数保存(C/C++的signed long int类型,pascal的longint类型),X=216(2的16次方),Y=231-1(2的31次方-1),xor为位异或运算,div为整除运算,and为位且运算,mod为取余运算。由于只保留了低31位,易得我们不用考虑数据的溢出问题。(注意每次A和B都会被改变)


输出格式

对于每个开采事件(开头为1的事件),输出一行一个整数,为每次的收益。


样例输入

10 5 1 2 10
1 1 3 3 4 4 6 6 9
4
1 6 3
1 9 1
0 1
1 1 1

样例输出

11
9
12
【样例说明】
最初的信息表如下
	1	2	3	4	5
1	0	1	1	2	2
2	0	5	7	7	9
3	1	2	3	4	5
4	0	1	2	4	5
5	2	4	7	8	8
6	0	2	3	8	9
7	1	3	5	6	8
8	3	3	3	7	8
9	0	1	2	3	9
10	0	0	1	4	4
变化后的第1行为
1	1	1	1	4	7
第一次开采可以在矿点6、8、9、10任意安排,可以在矿点3或4中选取一个安排开采。一种最优安排是在矿点6安排4人,在矿点8安排1人。第二次开采可以在矿点9安排,可以在矿点6、4、3、1中选择一个安排。一种最优安排是在矿点9安排1人,在矿点6安排4人。

提示

有50%的数据,对于满足2≤i≤n的整数i,Fi=i-1。这些数据中有40%的数据(即所有数据的20%)满足n≤500,m≤20,C≤500。除上述数据,另有40%的数据满足n≤500,m≤20,C≤500。对于100%的数据1≤n≤20000,1≤m≤50,1≤C≤2000。对于满足2≤i≤n的整数i,1≤Fi<i。1≤A,B≤231-1,1≤Q≤10000。


题目来源

没有写明来源

Menuappsclose